that there is a shift in setpoint, rather than a shift in the efficiency or sensitivity of temperature regulation.

In fact the setpoint changes have been treated as early as 1898. "Aschoff (1970), Colin, Timbal, Boute-llier, Houssas and Sifre (1968) and Timbal et al. (1972), following Richet (1898) have favoured the hypothesis of a nycthemeral change in the setpoint."

Besides the above-mentioned reference the author is further advised to revise the chronobiological literature, namely the following works:

T.H. Bensinger

Obviously, we are in agreement that the daily fluctuations of central temperature are caused by shifts of the "setpoint". Whether this was finally proven by Richet in 1898 or as late as 1977 (Fig. 21) or in between these times by any of the references quoted depends on how the setpoint is defined. My remark was based on the definition illustrated in Fig. 5 and 6.

Bodil Nielsen, I. Oddershede, A. Torp, and P. O. Fanger.

August Krogh Institute, Copenhagen University, and Laboratory of Heating and Air Conditioning, Technical University of Denmark.
Abstract
5 women and 5 men each participated in six 2½ hour comfort experiments at six constant activity levels: lying, sitting, and continuous bicycle exercise requiring 2, 3, 4 and 6 times BMR. During each experiment the ambient temperature was adjusted to keep the subject thermally comfortable. The 5 men then each participated in four experiments where the same average metabolic rates (2x BMR and 6xBMR) were established by intermittent work (5 min work/5 min rest, and 5 min work/10 min rest). The ambient temperature was constant at the level felt comfortable during continuous work. Thermal sensation votes were collected.

To maintain comfort the subjects preferred a lower skin temperature and an increased sweat secretion the higher the activity level. Results agree reasonably well with Panger's comfort criteria up to an activity of 250 W/m². Continuous and intermittent work provide the same average thermal sensation.

The comfort equation (1, 2) describing the conditions for thermal comfort has proved to be a useful tool in practice for the design of indoor climates.

By the derivation of the comfort equation Panger identified the skin temperature and the sweat secretion as physiological parameters closely related to the sensation of comfort. For people feeling thermally comfortable he found regression equations expressing both the skin temperature and the sweat secretion as a function of the activity level. These regression equations were found in experiments with subjects at activities up to 180 W/m² (internal heat production). Activities higher than sedentary were established by intermittent work: 5 min constant work followed by rest periods of 5, 10 or 25 min repeated during a 3 hour experimental period (1, 3). The purpose of the present study is a) to study comfort conditions at higher activities than 180 W/m² and, b) to compare comfort conditions during continuous and intermittent work.

Experimental method
Ten subjects (5 females and 5 males) participated in the main experiments. Three male subjects were later included in the study, participating in the continuous work experiments at high activities. The subjects were fit students of physical education. All subjects were volunteers who were paid for participating in the experiments. Anthropometric data for the subjects are listed in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
<th>DuBois</th>
<th>Max Oxygen Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years</td>
<td>cm</td>
<td>kg</td>
<td>m²</td>
<td>L/min</td>
</tr>
<tr>
<td>Females mean</td>
<td>22.2</td>
<td>168</td>
<td>59.4</td>
<td>1.67</td>
</tr>
<tr>
<td>n = 5</td>
<td>SD</td>
<td>2</td>
<td>6</td>
<td>6.2</td>
</tr>
<tr>
<td>Males mean</td>
<td>24.8</td>
<td>182</td>
<td>74.8</td>
<td>1.95</td>
</tr>
<tr>
<td>n = 8</td>
<td>SD</td>
<td>2</td>
<td>7</td>
<td>9.8</td>
</tr>
</tbody>
</table>

(*) Standard Deviation of the sample
Abstract
5 women and 5 men each participated in six 2-hr comfort experiments at six constant activity levels: lying, sitting, and continuous bicycle exercise requiring 2, 3, 4 and 6 times BMR. During each experiment the ambient temperature was adjusted to keep the subject thermally comfortable. The 5 men then each participated in four experiments where the same average metabolic rates (2x BMR and 6xBMR) were established by intermittent work (5 min work/5 min rest, and 5 min work/10 min rest). The ambient temperature was constant at the level felt comfortable during continuous work. Thermal sensation votes were collected.

To maintain comfort the subjects preferred a lower skin temperature and an increased sweat secretion the higher the activity level. Results agree reasonably well with Fanger's comfort criteria up to an activity of 250 W/m². Continuous and intermittent work provided the same average thermal sensation.

The comfort equation (1, 2) describing the conditions for thermal comfort has proved to be a useful tool in practice for the design of indoor climates.

By the derivation of the comfort equation Fanger identified the skin temperature and the sweat secretion as physiological parameters closely related to the sensation of comfort. For people feeling thermally comfortable he found regression equations expressing both the skin temperature and the sweat secretion as a function of the activity level. These regression equations were found in experiments with subjects at activities up to 180 W/m² (internal heat production). Activities higher than sedentary were established by intermittent work: 5 min constant work followed by rest periods of 5, 10 or 25 min repeated during a 3 hour experimental period (1, 3). The purpose of the present study is a) to study comfort conditions at higher activities than 180 W/m² and, b) to compare comfort conditions during continuous and intermittent work.

Experimental method
Ten subjects (5 females and 5 males) participated in the main experiments. Three male subjects were later included in the study, participating in the continuous work experiments at high activities. The subjects were fit students of physical education. All subjects were volunteers who were paid for participating in the experiments. Anthropometric data for the subjects are listed in Table 1.

Table 1
Anthropometric Data for the Subjects.

<table>
<thead>
<tr>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
<th>DuBois Body Surface Area</th>
<th>Max Oxygen Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years</td>
<td>cm</td>
<td>kg</td>
<td>m²</td>
<td>l/min</td>
</tr>
<tr>
<td>Females mean</td>
<td>22.2</td>
<td>168</td>
<td>59.4</td>
<td>1.67</td>
</tr>
<tr>
<td>n = 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>Males mean</td>
<td>24.8</td>
<td>182</td>
<td>74.8</td>
<td>1.95</td>
</tr>
<tr>
<td>n = 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.16</td>
</tr>
</tbody>
</table>

*) Standard Deviation of the sample
The experiments took place in the first environmental chamber (2) of the Laboratory of Heating and Air Conditioning, Technical University of Denmark. In the chamber the air velocity was approx. 0.1 m/s, the mean radiant temperature was kept equal to the air temperature and the relative humidity was 50%.

Each subject participated in six 2½ hour experiments corresponding to six activities: resting on a bed, sitting in a chair, and continuous bicycle exercise requiring approximately 2, 3, 4 and 6 times the basal metabolic rate. The subjects wore shorts or a bikini. The bed was of canvas without a mattress. The chair had a seat and a back of plastic strips. Exercise took place on a Krogh ergometer (60 rev/min).

During each experiment the same procedure was applied as in several earlier comfort studies (4, 5, 6). A check was made before beginning the test to ensure that the subject had had sufficient sleep and normal meals, that there was no fever, and that alcohol had not been consumed during the previous 24 hrs. At the start of each experiment the air temperature and the mean radiant temperature were set at a value at which it was estimated that the subject would feel thermally neutral during the actual activity.

Since it was very important that the environment was optimally comfortable for the subject, the ambient temperature was adjusted to his wishes. This was done by asking the subject every 10 min throughout the experiment whether he would prefer the environment to be warmer, cooler, or the same, and then altering the ambient temperature accordingly. The subject was asked to request even very small changes in order to avoid the chamber temperature being kept constant at the limit of that found comfortable by the subject. The ambient temperature in the chamber could be changed quite rapidly (for small temperature changes the time constant was approximately 2 min).

The skin temperature of each subject was measured by means of 14 thermistors taped to the skin by surgical tape. The 14 thermistors were distributed evenly over the body surface as reported by Olesen et al.

(4). The rectal temperature was measured by a flexible thermistor rectal probe. All temperatures were registered every 5 min by means of a data-recording system outside the chamber. The weight loss was registered by weighing the subject every 30 min on a balance (SD = 2 g). The pause in the exercise necessary for weighing had a duration of 1-2 min. The total weight loss per unit of time was for each experiment determined by means of a linear regression analysis of the 5 weighings, with a half-hour interval, during the last 2 hours of the exposure. The evaporative weight loss was then found by subtracting the difference between CO₂ loss and O₂ gain.

After 100 and 130 min the rate of oxygen consumption was determined by the Douglas bag method. The air volume was measured by a Collin’s spirometer and air samples were measured on a paramagnetic O₂-analysre (Servomex) and a Beckman infrared CO₂-analysre. The metabolic rate, M (W), was calculated as \(M = 341 \times \frac{V_{O_2}}{Q} \)

where \(V_{O_2} \) (L/min) is the rate of oxygen uptake. The rate of heat production in the body was calculated as the metabolic rate minus the rate of external work.

During the experiment consumption of water was allowed and measured. All experiments took place in the morning.

Intermittent Work

Five male subjects participated furthermore in four 1½ hour experiments with intermittent exercise. In one experiment the subject alternately exercised for 5 min and rested for 5 min sitting on the bicycle ergometer. In another experiment the subject alternately exercised for 5 min and rested for 10 min. In both experiments the average metabolic rate during a cycle was maintained at approximately 2 x BMR.

In two other similar experiments the workload was increased to maintain an average metabolic rate of approximately 6 x BMR.

During each experiment the ambient temperature was kept constant at a value felt neutral by the partic-
The experiments took place in the first environmental chamber (2) of the Laboratory of Heating and Air Conditioning, Technical University of Denmark. In the chamber the air velocity was approx. 0.1 m/s, the mean radiant temperature was kept equal to the air temperature and the relative humidity was 50%.

Each subject participated in six 2½ hour experiments corresponding to six activities: resting on a bed, sitting in a chair, and continuous bicycle exercise requiring approximately 2, 3, 4 and 6 times the basal metabolic rate. The subjects wore shorts or a bikini. The bed was of canvas without a mattress. The chair had a seat and a back of plastic strips. Exercise took place on a Krogh ergometer (60 rev/min).

During each experiment the same procedure was applied as in several earlier comfort studies (4, 5, 6). A check was made before beginning the test to ensure that the subject had had sufficient sleep and normal meals, that there was no fever, and that alcohol had not been consumed during the previous 24 hrs. At the start of each experiment the air temperature and the mean radiant temperature were set at a value at which it was estimated that the subject would feel thermally neutral during the actual activity.

Since it was very important that the environment was optimally comfortable for the subject, the ambient temperature was adjusted to his wishes. This was done by asking the subject every 10 min throughout the experiment whether he would prefer the environment to be warmer, cooler, or the same, and then altering the ambient temperature accordingly. The subject was asked to request even very small changes in order to avoid the chamber temperature being kept constant at the limit of that found comfortable by the subject. The ambient temperature in the chamber could be changed quite rapidly (for small temperature changes the time constant was approximately 2 min).

The skin temperature of each subject was measured by means of 14 thermistors taped to the skin by surgical tape. The 14 thermistors were distributed evenly over the body surface as reported by Olesen et al.

(4). The rectal temperature was measured by a flexible thermistor rectal probe. All temperatures were registered every 5 min by means of a data-recording system outside the chamber. The weight loss was registered by weighing the subject every 30 min on a balance (SD = 0.2 g). The pause in the exercise necessary for weighing had a duration of 1-2 min. The total weight loss per unit of time was for each experiment determined by means of a linear regression analysis of the 5 weighings, with a half-hour interval, during the last 2 hours of the exposure. The evaporative weight loss was then found by subtracting the difference between CO₂ loss and O₂ gain.

After 100 and 130 min the rate of oxygen consumption was determined by the Douglas bag method. The air volume was measured by a Collin's spirometer and air samples measured on a paramagnetic O₂-analysers (Servomex) and a Beckman infrared CO₂-analysers. The metabolic rate, M (W), was calculated as: $M = 341 \times \bar{V}_{O_2}$, where \bar{V}_{O_2} (L/min) is the rate of oxygen uptake. This rate of heat production in the body was calculated as the metabolic rate minus the rate of external work.

During the experiment consumption of water was allowed and measured. All experiments took place in the morning.

Intermittent work
Five male subjects participated furthermore in four 1½ hour experiments with intermittent exercise. In one experiment the subject alternately exercised for 5 min and rested for 5 min sitting on the bicycle ergometer. In another experiment the subject alternately exercised for 5 min and rested for 10 min. In both experiments the average metabolic rate during a cycle was maintained at approximately 2 X BMR.

In two other similar experiments the workload was increased to maintain an average metabolic rate of approximately 6 X BMR.

During each experiment the ambient temperature was kept constant at a value felt neutral by the partic-
ular subject during continuous exercise at the same average metabolic rate. Strictly speaking, the chamber was maintained at a slightly lower ambient temperature, the temperature decrement being calculated to compensate for the decreased relative mean air velocity during intermittent work (0.24 m/s during 5 min work/10 min rest and 0.32 m/s during 5 min work/5 min rest, compared to 0.67 m/s at continuous work (7).

The subject indicated his thermal sensation on the usual seven point psycho-physical scale: +3 hot, +2 warm, +1 slightly warm, 0 neutral, -1 slightly cool, -2 cool, -3 cold.

During a work/rest cycle of 10 (15) min the subject voted at 2, 4, 6, 8, 9 (9), 12, 14 min after the beginning of each cycle.

At the same time rectal and skin temperature were registered. During the penultimate work/rest cycle all the expired air was sampled separately from the work and rest period to determine the metabolic rate. The rest of the procedure was the same as in the experiments with continuous exercise.

Results
During continuous work the skin temperatures found comfortable (neutral) by the subjects are plotted in Fig. 1 as a function of the heat production in the body. The skin temperature indicated is the average during the last two hours of each experiment. It is obvious that the skin temperature found comfortable decreases with increasing activity, as established earlier by Fanger (2), up to activities around 180 W/m²; his regression line, is shown for comparison. At high activities (above 250 W/m²) the mean skin temperature found neutral seems to level off and no values below approximately 28°C were observed.

Fig. 2 shows the corresponding relation between evaporative heat loss and internal heat production. The subjects prefer to have a certain sweat secretion at moderate and high activities as demonstrated earlier by Fanger (2), and his regression line is shown for comparison. During intermittent work the mean value of the skin temperature and the evaporative
ular subject during continuous exercise at the same average metabolic rate. Strictly speaking, the chamber was maintained at a slightly lower ambient temperature, the temperature decrement being calculated to compensate for the decreased relative mean air velocity during intermittent work (0.24 m/s during 5 min work/10 min rest and 0.32 m/s during 5 min work/5 min rest, compared to 0.67 m/s at continuous work (7).

The subject indicated his thermal sensation on the usual seven point psycho-physical scale: +3 hot, +2 warm, +1 slightly warm, 0 neutral, -1 slightly cool, -2 cool, -3 cold.

During a work/rest cycle of 10 (15) min the subject voted at 2, 4, 6, 8, 10 (9), 12, 14 min after the beginning of each cycle.

At the same time rectal and skin temperature were registered. During the penultimate work/rest cycle all the expired air was sampled separately from the work and rest period to determine the metabolic rate.

The rest of the procedure was the same as in the experiments with continuous exercise.

Results

During continuous work the skin temperatures found comfortable (neutral) by the subjects are plotted in Fig. 1 as a function of the heat production in the body. The skin temperature indicated is the average during the last two hours of each experiment. It is obvious that the skin temperature found comfortable decreases with increasing activity, as established earlier by Fanger (2), up to activities around 180 W/m²; his regression line is shown for comparison. At high activities (above 250 W/m²) the mean skin temperature found neutral seems to level off and no values below approximately 28°C were observed.

Fig. 2 shows the corresponding relation between evaporative heat loss and internal heat production. The subjects prefer to have a certain sweat secretion at moderate and high activities as demonstrated earlier by Fanger (2), and his regression line is shown for comparison. During intermittent work the mean value of the skin temperature and the evaporative

![Fig. 1: Mean skin temperature as a function of heat production in the body for subjects feeling thermally neutral during continuous work.](image)

![Fig. 2: Evaporative heat loss as a function of heat production in the body for subjects feeling thermally neutral during continuous work.](image)
heat loss during the 1½ hour exposure was found to agree well with the data in Figs. 1 and 2 for continuous work. The rectal temperature increased with increasing activity. When rectal temperature for subjects feeling thermally neutral is plotted against rate of heat production the scatter is great, due to differences in “relative workload” for the different subjects. It increased in average approximately 0.006 K per W/m² heat production above BMR.

The mean thermal sensation votes for the intermittent experiments are shown on Fig. 3. Both at the moderate and high activity the mean thermal sensation vote for all the subjects was close to neutral. But the skin temperature and the thermal sensation varied during the work/rest cycle (Fig. 4). The amplitude of the skin temperature was greatest about 2 K at the highest activity and during the 5 min work/10 min rest cycle. The skin temperature was highest during rest and lowest in the work period. The thermal sensation vote increased during the work period while the skin temperature decreased.

Fig. 3: Mean thermal sensation of male subjects during intermittent work at ambient temperatures felt thermally neutral during continuous work at the same average heat production in the body.

Discussion

Based on studies with normal college-age subjects who worked intermittently at activities up to approximately 180 W/m², Fanger (1, 2) derived the comfort equation. From this equation combinations of the environmental parameters can be predicted that will provide thermal neutrality at a given activity and clothing.

The subjects in the present study were fit physical education students who were able to work continuously for 2½ hours at high activities (up to 6 x BMR). At activities below 270 W/m² the results agree reasonably well with the regression line found in earlier experiments. The mean skin temperature felt comfortable decreased with increasing activity (Fig. 1). At high activities there may exist some limit for the skin temperature, around 28°C, below which the skin is felt too cool (Fig. 1). Studies by Gagge et al. (8) gave similar results. Our subjects seemed to prefer an environment that increased their sweat rate rather than decreased their skin temperature at high activities (heat production above 250 W/m²).

A curve through the points from our experiments seems to be less steep than that of Fanger (Fig. 1). In his earlier study (1, 2) with intermittent work
while subjects during
continuous work at
neutral body tempera-
tures felt
thermal sensation
to neutral. But
thermal sensation varied
The amplitude of
about 2 K at the
work/10 min rest
rest.
thermal sensation
while the skin

Discussion

Based on studies with normal college-age subjects who worked intermittently at activities up to approximately 180 W/m², Fanger (1, 2) derived the comfort equation. From this equation combinations of the environmental parameters can be predicted that will provide thermal neutrality at a given activity and clothing.

The subjects in the present study were fit physical education students who able to work continuously for 24 hours at high activities (up to 6 × BMR). At activities below 250 W/m² the results agree reasonably well with the regression line found in earlier experiments. The mean skin temperature felt comfortable decreased with increasing activity (Fig. 1). At high activities there may exist some limit for the skin temperature, around 38°C, below which the skin is felt too cool (Fig. 1). Studies by Gagge et al. (8) gave similar results. Our subjects seemed to prefer an environment that increased their sweat rate rather than decreased their skin temperature at high activities (heat production above 250 W/m²).

A curve through the points from our experiments seems to be less steep than that of Fanger (Fig. 1). In his earlier study (1, 2) with intermittent work
the subjects were dressed in a 0.6 clo standard uniform, while our subjects only wore shorts. Although the average rate of evaporative heat loss was similar in the present and in the earlier study (Fig. 2), the sweat secretion in the intermittent work periods has been 2 or 3 times higher. The tactile sensation of the wet clothing and the increased skin wetness due to the resistance to evaporation in the clothing may have caused the subjects in the earlier study to prefer a colder skin and thus a smaller rate of sweating at the higher activity levels.

It may be concluded from the present study that the comfort equation tends to predict too cool environments at high activities. It is recommended that the equation be applied with caution at activities above 250 W/m².

There was good agreement between the mean values of the physiological parameters obtained during intermittent work and the corresponding values during continuous work at the same average heat production in the body. The mean thermal sensation votes for the subjects were close to neutral during the intermittent work at an ambient temperature that was felt neutral during continuous work (Fig. 3). This indicates that the comfort equation, originally based on intermittent work experiments, is also applicable for continuous work.

Acknowledgement
The authors wish to thank the Copenhagen General Housing Corporation (KAB) for the financial support given to the present study.

References

DISCUSSION

M. Hollooa
Delft University of Technology, NL

From the paper of Dr. Benzinger we learned that sweat rate is not a function of the skin temperature but of the internal temperature, while you write in your paper "a colder skin and thus a smaller rate of sweating".

References

DISCUSSION

M. Rolloos
Delft University of Technology, NL

From the paper of Dr. Benzingwer we learned that sweat rate is not a function of the skin temperature but of the internal temperature, while you write in your paper "a colder skin and thus a smaller rate of sweating". Is that in agreement with Dr. Benzingwer?
B. Nielsen

Yes, Dr. Benzinger's statement holds for high skin temperatures (> 33-34°C). At lower skin temperatures an inhibition of sweating is elicited from skin receptors, also in Dr. Benzinger's experiments.

E. Sundahl

Technical University of Norway

I am very concerned about relating your results to real work.

1. How far can you extrapolate your results?
2. Are 5 min. work and 10 min. rest equal to 15 min. work and 30 min. rest, etc.?
3. Can you transfer your results for naked persons to persons with working clothing?
4. Can you transfer your results with well trained persons to the average working population?

B. Nielsen

1+2. We don't know how far the extrapolation holds. This study expanded the range from Fanger's original 180 W/m² to about 300 W/m² heat production. We found a tendency to a levelling out at the highest activity levels or a slightly lower slope for continuous exercise. Results from our intermittent exercise (5 min work/5 min rest, and 5 min work/10 min rest) agreed very well with the continuous exercise for the same subjects.

3. We don't know how clothing and especially the wetness of clothing at high working intensities will affect the comfort conditions.

4. I think the results from the well trained subjects can be used for the average working population, since the results agree reasonably well with Fanger's original equation. But the average person cannot work at the highest intensities for so long as 3 hrs.

M.A. Humphreys

Building Research Station, UK

Prefered T_a for these subjects scattered much more than the preferred T_{sk}. The following examples at two activities may illustrate this:

\[
\begin{align*}
\text{activity} & \quad n & \quad T_{sk} & \quad T_a \\
6 & \quad 7 & \quad 30.8 & \quad 19.0 \\
\quad (127-184) & \quad (29.8-31.8) & \quad (16.4-22.1) \\
3 & \quad 3 & \quad 28.4 & \quad 17.9 \\
\quad (274-298) & \quad (28.0-28.6) & \quad (14.0-21.8) \\
\end{align*}
\]

It is interesting that the authors reached similar conclusions which we also found for continuous exercise during temperature swings. (Gonzalez, R.R., Y.Nishi and A.P. Gagne. Magnitude estimation of thermal comfort during alterations in activity level and ambient temperature. In: Physiological Requirements on the Microclimate in Industry and Problems of their Technical Realisation. M.Jokl (ed), Inst. of Hygiene and Epide-
B. Nielsen

1. Rectal temperature T_{re} increased with increasing heat production (approx. 0.006 K per W/m² heat production above BMR). Thus, evaporative heat loss and T_{re} both increase with heat production in the comfort condition. But the correlation between T_{re} and activity is rather bad. Exercise core temperature is better correlated with individual relative work work load (percentage of max. oxygen uptake) than with absolute level of heat production (Saltin and Hermansen, J. Appl. Physiol. 21, 1757, 1966. B. Nielsen, Acta physiol. scand. 52, 215, 1966).

2. Fanger’s equation predicts preferred skin temperature much better than preferred environmental temperature for these subjects due to the very different sweating capacities of the subjects at high activities.

Could you tell us please the actual air temperatures that the subjects found to be comfortable at the different metabolic rates?

Preferred T_a for these subjects scattered much more than the preferred T_{sk}. The following examples at two activities may illustrate this:

<table>
<thead>
<tr>
<th>H (W/m²)</th>
<th>T_{sk} (°C)</th>
<th>T_a (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 7</td>
<td>152</td>
<td>30.8</td>
</tr>
<tr>
<td>range (127-184)</td>
<td>(29.8-31.8)</td>
<td>(16.4-22.1)</td>
</tr>
</tbody>
</table>

| n = 3 | 286 | 28.4 |
| range (274-298) | 28.0-28.6 | (14.0-21.8) |

It is interesting that the authors reached similar conclusions which we also found for continuous exercise during temperature swings. (Gonzalez, R.R., Y.Nishi and A.P.Gage. Magnitude estimation of thermal comfort during alterations in activity level and ambient temperature. In: Physiological Requirements on the Microclimate in Industry and Problems of their Technical Realization. M.Jokl (ed.), Inst. of Hygiene and Epidemiology, Prague, Czechoslovakia, p. p. 62-73, 1975). In

M.A.Bumphreys
Building Research Station, UK

B. Nielsen

R.R.Gonzales
John B.Pierce Foundation Lab., USA

For high skin temperature from skin receptors results to real sensation to 15 min. asked persons to well trained sensation?

Relation holds.

Fanger’s original equation. We found highest activity continuous exercise (5 min work interval) agreed very the same subjects. especially the intensities will trained subjects population, since Fanger’s origin cannot work at 3 hrs.

Study between temperature with predict the for these
the latter study and in the Gagge, Saltin and Stolwijk study, the comfort equation also estimated too cold skin temperatures at exercise levels > 250 Wm⁻² (see fig.). We found that the multiple regression equation combining operative temperature (T₀) and net metabolic heat flow (Wₙₖ) where

\[T_{sk} = 0.21T_0 - 0.006W_{nk} + 27.5 \]

predicted adequately probable Tₑₙₖ for comfort during exercise up to 6 mets (350 Wm⁻²).

B. Nielsen

It is fine that the results support each other. I think we need more experiments at high activity levels, including studies of the effect of clothing during intermittent work of high intensity.