Energy performance of UFAD systems

- **Goal/Significance**
 - Develop a version of the whole-building energy simulation program, EnergyPlus, capable of modeling UFAD systems
 - This will be the first validated UFAD energy simulation tool

- **Project details**
 - Project start: November 1, 2002
 - Final report and software: February 28, 2006
 - Ready for next release of EnergyPlus: April 15, 2006
 - Primary funding ($610K) from California Energy Commission (CEC) Public Interest Energy Research (PIER) program
 - Additional support from CBE, U.S. Department of Energy, and York International
Research team

Center for the Built Environment, UC Berkeley
- Fred Bauman
- Tom Webster
- Hui Jin
- Wolfgang Lukaschek
- Allan Daly, Taylor Engineering
- Ian Doebber, Arup

Dept. of Mech. and Aero. Eng., UC San Diego
- Paul Linden
- Qing (Anna) Liu

Lawrence Berkeley National Laboratory
- Fred Buhl

York International
- Jack Geortner and others

Project Advisory Committee (PAC)

Commission Project Manager
- Norm Bourassa (current), CEC
- Martha Brook (former), CEC

PAC
- Dru Crawley, US DOE
- Dan Fisher, Oklahoma State University
- Phil Haves, LBNL
- Blair McCarry/Kevin Hydes, Stantec
- Mike Scofield, Conservation Mechanical
- Dennis Stanke, Trane
- Steve Taylor, Taylor Engineering
Energy performance of UFAD systems

- UFAD Version of EnergyPlus (LBNL)
- Plenum Model (CBE)
- RAS Model (UCSD)
- System Upgrades (LBNL)
- Plenum Testing (CBE)
- Full-scale Testing (CBE/York)
- Salt Tank Testing (UCSD)

Thermal performance of underfloor plenums

- CFD model
- Full-scale experiments
- Validate model vs. test facility
- Study thermal performance for range of design and operating conditions using CFD model
- Develop simplified plenum model for implementation in EnergyPlus
Thermal performance of underfloor plenums

Recent publications

- “Testing and Modeling Underfloor Air Supply Plenums”
 Paper on CFD plenum model validation submitted to
 ASHRAE Transactions in October 2005 (see handouts)
- “Heat Transfer Pathways in UFAD Systems”
 Paper on simplified heat transfer analysis submitted to
 ASHRAE Transactions in June 2005

Key findings – Underfloor plenums

- Airflow delivery and pressure distribution are very uniform
 within same plenum zone.
- Air leakage from pressurized plenum can be significant and
 must be controlled and accounted for.
- Heat gain into supply plenum (thermal decay) can be quite
 high (30-40% of room load) in multi-story buildings.
- Plenum inlet conditions can have an important impact on the
 velocity and temperature distribution in plenum.
- Overall energy balance of plenum varies by no more than 10%
 for most practical plenum configurations
Energy performance of UFAD systems

UFAD Version of EnergyPlus (LBNL)

Plenum Model (CBE)

RAS Model (UCSD)

System Upgrades (LBNL)

Full-scale Testing (CBE/York)

Salt Tank Testing (UCSD)

Room air stratification (RAS)

Approach

- Full-scale laboratory tests of commercially available floor diffusers in realistic office setting
- Study impact of various design and operating parameters on room air stratification (RAS)

Parameters investigated

- Type and number of diffusers
- Diffuser throw
- Supply volume
- Supply temperature
- Room load
- Plenum leakage
- Perimeter/interior zones
- Window blinds

York test lab
Sample room air stratification test results

<table>
<thead>
<tr>
<th>Height [ft]</th>
<th>Temperature [°F]</th>
<th>Temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>20.0</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>21.1</td>
</tr>
<tr>
<td>3</td>
<td>70</td>
<td>22.2</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>23.3</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>24.4</td>
</tr>
<tr>
<td>6</td>
<td>70</td>
<td>25.6</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>26.7</td>
</tr>
<tr>
<td>8</td>
<td>72</td>
<td>20.0</td>
</tr>
<tr>
<td>9</td>
<td>72</td>
<td>21.1</td>
</tr>
<tr>
<td>10</td>
<td>72</td>
<td>22.2</td>
</tr>
<tr>
<td>11</td>
<td>72</td>
<td>23.3</td>
</tr>
<tr>
<td>12</td>
<td>72</td>
<td>24.4</td>
</tr>
<tr>
<td>13</td>
<td>72</td>
<td>25.6</td>
</tr>
<tr>
<td>14</td>
<td>72</td>
<td>26.7</td>
</tr>
</tbody>
</table>

6 workstations

6 SW, 0.6 cfm/sf, 81% DDR
8 SW, 0.6 cfm/sf, 64% DDR
10 SW, 0.6 cfm/sf, 48% DDR
12 SW, 0.6 cfm/sf, 39% DDR
14 SW, 0.6 cfm/sf, 36% DDR

Height [m]

Testing and modeling RAS in UFAD systems

Conducted by UC San Diego
Key findings – RAS testing

- Besides reducing airflow, lowering diffuser throw for a given load and setpoint increases stratification
- Diffuser throw characteristics depend on diffuser type and operating conditions
- Closing blinds in perimeter zones increases stratification and lowers airflow for given load and thermostat setting
- Plenum airflow leakage into the occupied zone will tend to increase stratification (cooler temperatures near floor), but is not detrimental if properly controlled
- Application of the CBE advanced thermal comfort model to a range of measured stratification levels (up to 7°F in occupied zone) for a constant load found only small differences in comfort
Current EnergyPlus model

Overhead system

- Ceiling plenum
- Conditioned space

Well-mixed, uniform temperature in conditioned space

New EnergyPlus UFAD model

Underfloor plenum

- Upper, stratified zone
- Lower, occupied zone

Room air stratification modeled as two zones separated at stratification height, h

SAT

Stratification height
Inputs and outputs for UFAD interior model

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply conditions</td>
<td>Return temp. TR</td>
</tr>
<tr>
<td>▪ Supply temp. Ts</td>
<td>Occupied zone temp. TL</td>
</tr>
<tr>
<td>▪ Total airflow rate Q</td>
<td>Strat. height h</td>
</tr>
<tr>
<td>Diffusers</td>
<td></td>
</tr>
<tr>
<td>▪ Type (swirl, VA)</td>
<td></td>
</tr>
<tr>
<td>▪ Number n</td>
<td></td>
</tr>
<tr>
<td>▪ Area of each diffuser A</td>
<td></td>
</tr>
<tr>
<td>Heat load and plumes</td>
<td></td>
</tr>
<tr>
<td>▪ Total heat load W</td>
<td></td>
</tr>
<tr>
<td>▪ Number of plumes m</td>
<td></td>
</tr>
<tr>
<td>▪ Heat source height hs</td>
<td></td>
</tr>
</tbody>
</table>

Validation of EnergyPlus

- Comparison with full-scale RAS test data
- Interior zones – Allan Daly
- Perimeter zones – Ian Doebber
- Consideration of radiation is key to make sense out of heat flows in UFAD (stratified) systems
Energy balance – Testing and EPlus modeling

Full-scale laboratory measurements demonstrate good room energy balance. EPlus simulations match well.

% of Total Cooling Load Leaving Room

Chamber calibration test EPlus simulation

Net room cooling load = 102%
Net room cooling load = 99%

Room extraction rate
Heat transfer into plenum
Conduction through walls

Energy performance of UFAD systems

UFAD Version of EnergyPlus (LBNL)

Plenum Model (CBE)
RAS Model (UCSD)
System Upgrades (LBNL)

Plenum Testing (CBE)
Full-scale Testing (CBE/York)
Salt Tank Testing (UCSD)
E+ system upgrades: Variable speed fan coil

- Return Air Plenum
- Glazing
- Return Air Grille
- Heating Coil
- Linear Bar Diffuser
- Variable-speed fan coil
- Flex Duct
- No U/A diffusers in perimeter zones
- Raised Access Floor

E+ system upgrades: Return air bypass

- Exhaust outlet
- Return air fan
- Return air plenum
- Bypass air
- Mixed air plenum
- Cooling coil
- Outside air intake
- Supply air
- Mixed air plenum
- Mixed air outlet
Next steps

- Interior and perimeter zone RAS models into EPlus
- Validate RAS models in EPlus with full-scale data
- Complete validation of plenum model
- Draft final report due January 2006
- Final report and software due February 28, 2006
- Ready for next release of EnergyPlus (April 15, 2006)

Future directions with EnergyPlus/UFAD

- UFAD energy analysis study
- Comparison with field data
- Investigate demand response performance
- EnergyPlus in Title 24
- EnergyPlus/UFAD training seminars